/ martes 15 de mayo de 2018

Microchips cuánticos, la solución más rápida para las computadoras convencionales

Investigadores han demostrado que la luz infrarroja puede desplazar electrones entre dos estados diferentes, el clásico 1 y 0

Una técnica para manipular electrones con luz puede hacer que los microchips de los ordenadores sean un millón de veces más rápidos o incluso se vuelvan cuánticos.

Un equipo de investigadores en Alemania y en la Universidad de Michigan ha demostrado cómo los pulsos láser infrarrojos pueden desplazar electrones entre dos estados diferentes, el clásico 1 y 0, en una delgada lámina de semiconductor.

"La electrónica ordinaria está en el rango de gigahercios, mil millones de operaciones por segundo. Este método es un millón de veces más rápido", dijo Mackillo Kira, profesor de U-M de ingeniería eléctrica e informática.

La computación cuántica podría resolver problemas que llevan demasiado tiempo en las computadoras convencionales, avanzando áreas como la inteligencia artificial, el pronóstico del tiempo y el diseño de fármacos. Las computadoras cuánticas obtienen su poder de la forma en que sus bits cuánticos mecánicos, o qubits, no son meramente 1 o 0, sin que pueden ser mezclas, conocidas como superposiciones, de estos estados.

"En una computadora clásica, cada configuración de bits debe almacenarse y procesarse uno por uno, mientras que un conjunto de qubits puede almacenar y procesar todas las configuraciones de una vez", dijo Kira.

Esto significa que cuando quieres ver un montón de posibles soluciones a un problema y encontrar la mejor opción, la computación cuántica puede llegar allí mucho más rápido. Pero los qubits son difíciles de hacer porque los estados cuánticos son extremadamente frágiles. La principal ruta comercial, seguida por compañías como Intel, IBM, Microsoft y D-Wave, utiliza circuitos superconductores: bucles de alambre enfriados a temperaturas extremadamente frías, en los que los electrones dejan de colisionar entre sí, y en su lugar forman estados cuánticos.

El material es una sola capa de tungsteno y selenio en una red de nido de abeja.

Esta estructura produce un par de estados de electrones conocidos como pseudoespines. No es el giro del electrón (y aun así, los físicos advierten que los electrones no giran realmente), sino que es una especie de momento angular. Estos dos pseudoespines pueden codificar el 1 y 0.

Los próximos pasos hacia la computación cuántica serán poner en marcha dos qubits a la vez, lo suficientemente cerca el uno del otro para que interactúen. Esto podría implicar el apilamiento de hojas planas de semiconductores o el uso de técnicas de nanoestructuración.

Una técnica para manipular electrones con luz puede hacer que los microchips de los ordenadores sean un millón de veces más rápidos o incluso se vuelvan cuánticos.

Un equipo de investigadores en Alemania y en la Universidad de Michigan ha demostrado cómo los pulsos láser infrarrojos pueden desplazar electrones entre dos estados diferentes, el clásico 1 y 0, en una delgada lámina de semiconductor.

"La electrónica ordinaria está en el rango de gigahercios, mil millones de operaciones por segundo. Este método es un millón de veces más rápido", dijo Mackillo Kira, profesor de U-M de ingeniería eléctrica e informática.

La computación cuántica podría resolver problemas que llevan demasiado tiempo en las computadoras convencionales, avanzando áreas como la inteligencia artificial, el pronóstico del tiempo y el diseño de fármacos. Las computadoras cuánticas obtienen su poder de la forma en que sus bits cuánticos mecánicos, o qubits, no son meramente 1 o 0, sin que pueden ser mezclas, conocidas como superposiciones, de estos estados.

"En una computadora clásica, cada configuración de bits debe almacenarse y procesarse uno por uno, mientras que un conjunto de qubits puede almacenar y procesar todas las configuraciones de una vez", dijo Kira.

Esto significa que cuando quieres ver un montón de posibles soluciones a un problema y encontrar la mejor opción, la computación cuántica puede llegar allí mucho más rápido. Pero los qubits son difíciles de hacer porque los estados cuánticos son extremadamente frágiles. La principal ruta comercial, seguida por compañías como Intel, IBM, Microsoft y D-Wave, utiliza circuitos superconductores: bucles de alambre enfriados a temperaturas extremadamente frías, en los que los electrones dejan de colisionar entre sí, y en su lugar forman estados cuánticos.

El material es una sola capa de tungsteno y selenio en una red de nido de abeja.

Esta estructura produce un par de estados de electrones conocidos como pseudoespines. No es el giro del electrón (y aun así, los físicos advierten que los electrones no giran realmente), sino que es una especie de momento angular. Estos dos pseudoespines pueden codificar el 1 y 0.

Los próximos pasos hacia la computación cuántica serán poner en marcha dos qubits a la vez, lo suficientemente cerca el uno del otro para que interactúen. Esto podría implicar el apilamiento de hojas planas de semiconductores o el uso de técnicas de nanoestructuración.

Local

¿Sabías que en el Edomex existen más de 200 sitios para comprar árboles de Navidad?

Para facilitar la ubicación de los puntos de venta, Probosque informó que habilitó un mapa interactivo para conocer la ubicación exacta de estos lugares

Local

Otorgan suspensión provisional del Centro de Bienestar en el Sierra Morelos de Toluca

Activistas reconocen que es el inicio de la batalla legal; piden que se proteja la zona

Local

Así fue el Festival Abarrotero en el Valle de Toluca 

Ofrecen a tenderos herramientas que les permitan aumentar sus ventas y ser más competitivos

Local

¿Cuánto cuesta realizar un evento en el Centro de Convenciones del Edomex?

Desde su creación éste lugar ha sido sede de importantes eventos en la entidad como asambleas, conferencias, informes de gobierno, eventos musicales, ferias de libro y espectáculos familiares

Local

Profesores sindicalizados de la Universidad Autónoma de Chapingo realizan paro de labores

Un grupo d ecatedráticos impidió el acceso a las instalaciones y colocó lonas en la entrada principal del Campus Texcoco

Policiaca

Influencer 'Fer Italia' no salió de prisión: Poder Judicial del Edomex

En agosto pasado fue detenido por elementos de la Fiscalía mexiquense debido a que está acusado del delito de violación; aunque una jueza decretó que podría continuar su proceso en libertad portando un brazalete, todavía no consiguen el dispositivo